高精度¶
前置知识¶
数组,模拟
目标¶
高精加高精,高精减高精,高精乘低精,高精乘高精,高精除低精
高精加高精¶
//一维数组版本
#include <bits/stdc++.h>
using namespace std;
const int N = 220;
int A[N], B[N], C[N], lena, lenb, lenc;
string a, b;
void add(int A[], int B[], int C[]){
int t = 0;
for (int i = 0; i < lena || i < lenb; i++){
if (i < lena) t += A[i];
if (i < lenb) t += B[i];
C[lenc++] = t % 10;
t /= 10;
}
if (t) C[lenc++] = 1;
while (lenc > 0 && C[lenc] == 0) lenc--;
for (int i = lenc; i >= 0; i--) cout << C[i];
puts("");
}
int main(){
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i--) A[lena++] = a[i] - '0';
for (int i = b.size() - 1; i >= 0; i--) B[lenb++] = b[i] - '0';
add(A, B, C);
return 0;
}
// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
if (A.size() < B.size()) return add(B, A);
vector<int> C;
int t = 0;
for (int i = 0; i < A.size(); i ++ )
{
t += A[i];
if (i < B.size()) t += B[i];
C.push_back(t % 10);
t /= 10;
}
if (t) C.push_back(t);
return C;
}
高精减高精¶
// 一维数组版本
#include <bits/stdc++.h>
using namespace std;
const int N = 220;
int A[N], B[N], C[N], lena, lenb, lenc;
string a, b;
void sub(int A[], int B[], int C[]){
int t = 0;
for (int i = 0; i < lena; i++){
t = A[i] - t;
if (i < lenb) t -= B[i];
C[lenc++] = (t + 10) % 10;
if (t < 0) t = 1;
else t = 0;
}
while (lenc > 0 && C[lenc] == 0) lenc--;
for (int i = lenc; i >= 0; i--) cout << C[i];
puts("");
}
int main(){
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i--) A[lena++] = a[i] - '0';
for (int i = b.size() - 1; i >= 0; i--) B[lenb++] = b[i] - '0';
sub(A, B, C);
return 0;
}
// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
vector<int> C;
for (int i = 0, t = 0; i < A.size(); i ++ )
{
t = A[i] - t;
if (i < B.size()) t -= B[i];
C.push_back((t + 10) % 10);
if (t < 0) t = 1;
else t = 0;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
高精乘低精¶
//一维数组版本
#include <bits/stdc++.h>
using namespace std;
const int N = 220;
int A[N], C[N], lena, lenc;
string a;
int b;
void mul(int A[], int b, int C[]){
int t = 0;
for (int i = 0; i < lena || t; i++) {
if (i < lena) t += A[i] * b;
C[lenc++] = t % 10;
t /= 10;
}
while (lenc > 0 && C[lenc] == 0) lenc--;
for (int i = lenc; i >= 0; i--) cout << C[i];
puts("");
}
int main(){
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i--) A[lena++] = a[i] - '0';
mul(A, b, C);
return 0;
}
vector<int> mul(vector<int> &A, int b)
{
vector<int> C;
int t = 0;
for (int i = 0; i < A.size() || t; i ++ )
{
if (i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
高精乘高精¶
//一维数组版本
#include <bits/stdc++.h>
using namespace std;
const int N = 550;
int A[N], B[N], C[N];
int lena, lenb, lenc;
string a, b;
void mul(int A[], int B[], int C[]){
for (int i = 0; i < lena; i++)
for (int j = 0; j < lenb; j++)
C[i + j] += A[i] * B[j];
lenc = lena + lenb;
for (int i = 0; i < lenc; i++){
C[i + 1] += C[i] / 10;
C[i] %= 10;
}
while (lenc > 0 && C[lenc] == 0) lenc--;
for (int i = lenc; i >= 0; i--) cout << C[i];
puts("");
}
int main(){
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i--) A[lena++] = a[i] - '0';
for (int i = b.size() - 1; i >= 0; i--) B[lenb++] = b[i] - '0';
mul(A, B, C);
return 0;
}
vector<int> mul(vector<int> A, vector<int> B)
{
vector<int> C(A.size() + B.size());
for (int i = 0; i < A.size(); i ++ )
for (int j = 0; j < B.size(); j ++ )
C[i + j] += A[i] * B[j];
for (int i = 0, t = 0; i < C.size() || t; i ++ )
{
t += C[i];
if (i >= C.size()) C.push_back(t % 10);
else C[i] = t % 10;
t /= 10;
}
while (C.size() > 1 && !C.back()) C.pop_back();
return C;
}
高精除低精¶
//一维数组版本
#include <bits/stdc++.h>
using namespace std;
const int N = 220;
int A[N], C[N], lena, lenc;
void div(int A[], int b, int C[]){
int t = 0;
for (int i = 0; i < lena; i++){
t = t * 10 + A[i];
C[i] = t / b;
t %= b;
}
while (lenc < lena && C[lenc] == 0) lenc++;
if (lenc == lena) lenc--;
for (int i = lenc; i < lena; i++) cout << C[i];
puts("");
cout << t << '\n';
}
int main(){
string a;
int b = 13;
cin >> a;
for (int i = 0; i < a.size(); i++) A[lena++] = a[i] - '0';
div(A, b, C);
return 0;
}
// vector版本
// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
vector<int> C;
r = 0;
for (int i = A.size() - 1; i >= 0; i -- )
{
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}
reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
题单¶
总结¶
高精度属于模拟算法,重点考察代码能力
在比赛中一般会开long long得部分分
但对于专业选手,在代码的某个环节,转换成高精度,写起来不费劲,是一个基本功